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Abstract
The discrete equations of motion for the quantum mappings of KdV type are
given in terms of the Sklyanin variables (which are also known as quantum
separated variables). Both temporal (discrete-time) evolutions and spatial
(along the lattice at a constant time-level) evolutions are considered. In
the classical limit, the temporal equations reduce to the (classical) discrete
Dubrovin equations as given in a previous publication (Nijhoff F W 2000 Chaos
Solitons Fractals 11 19–28). The reconstruction of the original dynamical
variables in terms of the Sklyanin variables is also achieved.

PACS numbers: 02.30.Ik, 03.65.Fd, 04.60.Nc, 05.50.+q

1. Introduction

The quantization of discrete-time systems is an outstanding problem within the wider context
of the quantum theory of dynamical systems. From the perspective of quantum chaos theory
(quantum chaology), quantum mappings have been studied by Berry et al [6]. Quantum
mechanical systems evolving in discrete-time have also been considered by Bender et al
[4, 5], where the emphasis was on the application of finite-element methods. Both of these
approaches deal with discrete-time systems that, in the classical limit, generically exhibit
chaos.

Integrable classical mappings, as opposed to mappings that exhibit chaos, have been
systematically constructed and studied in recent years (see, for example, [11, 25, 26, 32–34]).
A specific set of examples are the so-called mappings of KdV type [8, 24], which were
classically constructed from periodic initial value problems on the lattice KdV [23] partial
difference equation. They are the principal model of interest in this paper. Integrable mappings
are highly nontrivial; however, there is a great deal of understanding of them, both on the level
of their solvability and on their classification.

Historically the quantization of integrable models formed many of the paradigms of
quantum theory. Furthermore, the inherent discreteness of quantum theory points to a specific
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role that discrete, and hence integrable discrete, systems may play in the further development
of the theory. Quantum integrability on the discrete spacetime lattice has been considered in
a number of papers (mostly from the perspective of R-matrix theory), for example, [7, 10, 20,
21, 27, 35]. Here the discrete aspect is not seen as some kind of approximation but, rather, it
is postulated as the underlying structure of spacetime from the very start. In the present paper,
adopting the same point of view, we will be mainly concerned with the approach initiated in
[7, 20, 21], where a non-ultralocal Yang–Baxter (R-matrix) structure appropriate for obtaining
an ‘integrable quantization’ of the mappings of KdV type was given (in the continuous-time
setting such a non-ultralocal Yang–Baxter structure had been previously used in connection
with the quantum Toda theory [2]).

Quantizing a discrete-time system is essentially different to the conventional quantization
procedure of Hamiltonian systems. In the continuous-time setting it is the Hamiltonian
(or commuting family of Hamiltonians) that stand central to the theory, the spectrum and
eigenfunctions of which are the main objects to be computed. The equations of motion in
terms of the canonical operators (in the Heisenberg picture), or the evolution of the states (in
the Schrödinger picture), only play a subsidiary role. In the discrete-time setting it is no longer
the Hamiltonian(s) that define the model, but the equations of motion exclusively. This draws
us away from the conventional schemes of quantization, and leads us to investigate more
closely the quantum equations of motion. Following the historical imperative once again,
integrability offers a leading principle to develop our understanding of quantum mechanics,
this time in the discrete regime.

By an integrable quantum mapping we mean an automorphism of the quantum algebra
under consideration, which, furthermore, possesses a ‘sufficient’ set of exact commuting
invariant functions on the algebra. (We will make this definition more precise later.) This is
the quantum counterpart of the classical integrability of mappings in the sense of Liouville–
Arnol’d–Veselov [33]. On the classical level, mappings of this type typically involve rational
expressions exhibiting singularities that imply that the time evolution cannot be globally
defined. The characterization of integrable maps through their singularity structure is a focus
point of current investigation (see, for example, [12, 28]). In the more restrictive context of
the mappings of KdV type, a natural resolution is to describe the mapping in terms of variables
that live on the Riemann surface associated with the underlying spectral curve. The explicit
description of the dynamics on the Riemann surface was achieved in [17] (see also [9, 22])
leading to the so-called discrete Dubrovin equations.

With this insight, one may take the point of view that the proper quantization procedure
for this discrete-time system is to write the equations of motion in terms of the quantum
analogue of these variables. These variables are Sklyanin’s variables (which are also known
as quantum separated variables). Following the correspondence with the classical case, the
equations of motion in terms of the Sklyanin variables are called quantum discrete Dubrovin
equations. (It should be noted that the Sklyanin variables are taking an increasingly primary
role in the field of integrable systems. They have played a fundamental part in various recent
publications, with motivations different to that of this work, such as [1, 3, 31].)

The outline of the paper is as follows. The non-ultralocal Yang–Baxter structure of [21]
is recapitulated in section 2, in such a way as to bring the features required for the derivation
of the quantum discrete Dubrovin equations to the fore. More specific information pertaining
to the mappings of KdV type is given in section 3. In section 4 the Sklyanin algebra is set up,
this paves the way for the derivation of the quantum discrete Dubrovin equations in section 5.
(Equations (5.14) and (5.20) give a temporal, that is discrete-time, evolution and, hence, are
called temporal quantum discrete Dubrovin equations. Equations (5.29) and (5.31) give a
spatial evolution and, hence, are called spatial quantum discrete Dubrovin equations.) The
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reconstruction of the original dynamical variables (of the mappings of KdV type) in terms
of the Sklyanin variables is also addressed in section 5. The well-defined evolution arising
from the quantum discrete Dubrovin equations and the reconstruction is illustrated in the one
and two degrees of freedom situations in section 6. We remain very formal and algebraic
throughout this paper, principally concentrating on the derivation of the quantum discrete
Dubrovin equations.

2. Non-ultralocal Yang–Baxter structure

The non-ultralocal Yang–Baxter structure for the class of discrete-time systems to which the
mappings of KdV type belong was given in [21]. The convention of that paper (the standard
convention) will be employed in this section, appendix A, and appendix B. This convention
includes that the subscripts 1, 2, . . . denote factors in a matricial tensor product, and the same
subscripts distinguish the associated spectral parameters. Care must be taken not to confuse
these subscripts with those that correspond to the grading of the monodromy matrix or the
subscripts which identify different dynamical variables. These are, however, all perfectly clear
within their context.

The only nontrivial commutation relations between the operators Ln(λ) are those on the
same and nearest-neighbour sites, namely as follows,

R+
12Ln,1Ln,2 = Ln,2Ln,1R

−
12, (2.1a)

Ln+1,1S
+
12Ln,2 = Ln,2Ln+1,1, (2.1b)

Ln,1Lm,2 = Lm,2Ln,1 |n − m | � 2, (2.1c)

where Ln(λ) is the L operator at the nth site and Ln,j denotes Ln(λ) acting nontrivially only
on the jth factor of the tensor product,

Ln,j := 1 ⊗ 1 ⊗ · · · ⊗ Ln(λj )︸ ︷︷ ︸
j th place

⊗ · · · ⊗ 1.

The operators R±
jk := R±

jk(λj , λk) act nontrivially only on the jth and kth factors of the tensor
product. As was shown in [21], equations (2.1a) to (2.1c) lead to

R+
12T

±
n,1T

±
n,2 = T ±

n,2T
±
n,1R

−
12, (2.2a)

T +
n,1S

+
12T

−
n,2 = T −

n,2S
−
12T

+
n,1, (2.2b)

where S+
12 = S−

21,

T +
n (λ) :=

←−
P∏

j=n+1

Lj(λ) T −
n (λ) :=

←−
n∏

j=1

Lj(λ), (2.3)

(P ∈ N denotes the ‘spatial’ periodicity of the model, 1 � n � P − 1) and also lead to

R+
12T1S

+
12T2 = T2S

−
12T1R

−
12, (2.4)

where T1 denotes the monodromy matrix, T (λ), acting nontrivially only on the first factor of
the tensor product; the monodromy matrix,

T (λ) :=
←−
P∏

n=1

Ln(λ). (2.5)
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(The convention for the ordered product in (2.3) and (2.5) is such that the matrices Ln are
ordered from right to left with increasing label n.) In the P = 2 case equation (2.2b)
replaces (2.1b). The compatibility relations of equations (2.1a) to (2.1c) lead to the following
consistency conditions on R± and S±:

R±
12R

±
13R

±
23 = R±

23R
±
13R

±
12, (2.6a)

R±
23S

±
12S

±
13 = S±

13S
±
12R

±
23. (2.6b)

Equation (2.6a) is the quantum Yang–Baxter equation for R±, which is coupled with S± by
equation (2.6b). It is also assumed that S−

12 and S+
12 are invertible. In order to establish that the

structure given by the above commutation relations allows for suitable commutation relations
for the monodromy matrix we need to impose in addition to (2.6a) and (2.6b) that

R±
12S

±
12 = S∓

12R
∓
12. (2.7)

Integrable mappings follow from a discrete-time Zakharov–Shabat system of the form

L̃n(λ)Mn(λ) = Mn+1(λ)Ln(λ), (2.8)

where the tilde ,̃ , denotes a time update and Mn(λ) is the discrete-time evolution operator at
the site n (M̃n(λ) would denote the discrete-time evolution operator at the site n at the next
time level). The M (or temporal) part of the extended Yang–Baxter structure, as given in
[7, 20, 21], allows one to derive the invariants of the discrete-time evolution. It also allows
one to show that the Yang–Baxter relation (2.4) is preserved throughout the (discrete) time
evolution. The only extra relations from the M part of the extended Yang–Baxter structure
required for these proofs are

R+
12Mn,1Mn,2 = Mn,2Mn,1R

−
12 (2.9)

and

T1M
−1
1,1S

+
12M1,2 = M1,2S

−
12T1M

−1
1,1 . (2.10)

The proofs are given in appendix A.
In the quantum discrete-time setting the commuting family of invariants (i.e., the invariants

of the discrete-time evolution) are given by expanding

τ(λ) = tr(K(λ)T (λ)) (2.11)

in powers of the spectral parameter, λ. The proof follows by taking the trace over both spaces
of the tensor product of P12K1K2 multiplying equation (2.10) from the left (where P12 is the
permutation operator). (The details can be found in appendix A.) The result is that

K2 = tr1
{
P

t1
12

[(t1
S+

12

)−1]}
, (2.12)

where the left superscript t1 denotes the matrix transpose in the first factor of the matricial
tensor product. Observe that the commutation relation for the Ln operators, equation (2.1a),
is of the same form as that for the Mn operators, equation (2.9), and it follows immediately
from equation (2.2b) that

T1L
−1
1,1S

+
12L1,2 = L1,2S

−
12T1L

−1
1,1, (2.13)

which is of the same form as equation (2.10). Hence it follows, in an exactly analogous fashion
to the temporal evolution, that there is a ‘spatial’ evolution which preserves the Yang–Baxter
relation (2.4) and the family of invariants (2.11). This is proved (in both the spatial and
temporal case) in appendix A. The spatial evolution is denoted by the hat ,̂ , hence

T̂ (λ) = L1(λ)T (λ)L1(λ)−1. (2.14)
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For later purposes it is now assumed that R−
12 is proportional to a rank-one projector for

a particular relative value of the spectral parameters λ1 and λ2. This occurs for a number of
quantum models [13]. From equations (2.4) and (2.7),

R−
12S

−
12T1S

+
12T2 = S+

12T2S
−
12T1R

−
12. (2.15)

Assuming the particular relative value of λ1 and λ2 such that R−
12 is proportional to a rank-one

projector, the quantum determinant [14, 15] is denoted by �, where

R−
12� = R−

12S
−
12T1S

+
12T2. (2.16)

From equations (2.1a) and (2.7)

R−
12S

−
12Ln,1Ln,2 = S+

12Ln,2Ln,1R
−
12. (2.17)

Maintaining the same particular relative value of λ1 and λ2, the local quantum determinant is
denoted by Qet(Ln), where

R−
12 Qet(Ln) = R−

12S
−
12Ln,1Ln,2. (2.18)

In appendix B it is shown that the quantum determinant factorizes in terms of the local quantum
determinants as

� =
←−
P∏

n=1

Qet(Ln). (2.19)

In section 3 the quantum mappings of KdV type are considered. The quantum determinant
and the local quantum determinants are central elements of the algebra for this model. Indeed,
the quantum determinant will play a central role, in both the mathematical and conventional
English sense, throughout the rest of this paper.

3. Quantum mappings of KdV type

In operator form the quantum mappings of KdV type, as introduced in [20, 21], are

ṽ2j−1 = v2j ṽ2j = v2j+1 − av2j
−1 + av2j+2

−1 (j = 1, . . . , P ), (3.1)

with imposed periodicity condition vi+2P = vi, P ∈ N. The dynamical variables, vn, are
Hermitian operators, a is a real number parameter. In the notation of [20] the commutation
relations of the dynamical variables read

[vj , vj ′ ] = h(δj,j ′+1 − δj+1,j ′), (3.2)

(h = −ih̄, where h̄ is Planck’s constant divided by 2π ). The periodic initial value problem,
from which the mapping arose, imposes on the mapping (3.1) the Casimirs

P∑
j=1

v2j =
P∑

j=1

v2j−1 =: ν, (3.3)

in such a way as to leave the value of these Casimir operators as a free parameter (it can easily
be seen from the commutation relation, equation (3.2), that this is a Casimir) hence, in the
classical limit, we obtain what could be called a (P − 1)-dimensional configuration space
generalization of the McMillan mapping [16]. We assume that ν �= 0.

We need to point out that, at this stage, we are only concerned with the algebraic structures
behind the integrability of the quantum discrete-time systems. Hence, as far as this paper
is concerned, we will deal with operators, such as the {vk} := {vk}k=1,...,2P , on a strictly
formal level (in the spirit of related work [10]). This involves, for instance, assumptions
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on the invertibility of the operators, disregarding, for the time being, questions concerning
the domains of the Hilbert spaces on which they act (we aim to return to this latter issue in
subsequent publications).

The Lax description of the mappings of KdV type is as follows:

Lj = V2jV2j−1 Vi =
(

vi 1
λi 0

)
(3.4)

and λ2j = λ, λ2j+1 = λ + a. The associated monodromy matrix, T (λ), is obtained by gluing
the elementary translation matrices Lj along a line connecting the sites 1 and P + 1 over one
period P, namely

T (λ) =
(

A(λ) B(λ)

C(λ) D(λ)

)
:=

←−
P∏

n=1

Ln(λ). (3.5)

The monodromy matrix has a natural grading in terms of the spectral parameter, λ,

T (λ) =
(

λP + λP−1AP−1 + · · · + A0 λP−1BP−1 + λP−2BP−2 + · · · + B0

λP CP + λP−1CP−1 + · · · + λC1 λP + λP−1DP−1 + · · · + λD1

)
. (3.6)

Observe that A(λ) and D(λ) are both monic polynomials in λ. The time evolution is given by

T̃ (λ) = M(λ)T (λ)M(λ)−1 Mn =
(

wn 1
λ 0

)
, (3.7)

where M is M1, the discrete-time evolution operator at lattice site 1. More explicitly, bearing
in mind that we are dealing with noncommuting operators, this gives us

T̃ (λ) =
(

wB + D 1
λ
(wA + C − wBw − Dw)

λB A − Bw

)
, (3.8)

where w := w1. As well as the mapping (3.1), the Zakharov–Shabat condition (2.8) reveals
that

wn = v2n−1 +
a

v2n

. (3.9)

For the mappings of KdV type, the realization of the R and S matrices, which are solutions
of the compatibility relations (2.6a) and (2.6b) under the condition (2.7), is as follows:

R+
12 = R−

12 − S+
12 + S−

12

R−
12 = 1 ⊗ 1 + h

P12

λ1 − λ2
(3.10)

S+
12 = 1 ⊗ 1 − h

λ2
F ⊗ E S−

12 = S+
21,

where the permutation operator P12 and the matrices E and F are given by

P12 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 E =
(

0 1
0 0

)
F =
(

0 0
1 0

)
. (3.11)

The realization (3.10) is assumed throughout the rest of the paper.
Classically equation (3.7) gives us that the trace of the monodromy matrix is invariant

under the discrete-time evolution. This argument no longer holds in the quantum case, as some
of the matrix entries consist of noncommuting operators. As stated in the previous section,
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within the quantum case the invariants are given by expanding equation (2.11) in powers of
the spectral parameter, λ. For mappings of KdV type equation (2.12) gives

K(λ) =
(

1 0
0 1 + h

λ

)
(3.12)

thus

τ(λ) = A(λ) +

(
1 +

h

λ

)
D(λ). (3.13)

Equation (3.10) shows that R−
12 is the fully antisymmetric projector, 1 − P12, when

λ2 = λ1 + h. Therefore, with λ1 = λ − h
2 =: λ− and λ2 = λ + h

2 =: λ+, equation (2.16) gives
the quantum determinant for this model. It may be expressed as

�(λ) = λ+

λ−
D(λ−)A(λ+) − B(λ−)C(λ+). (3.14)

There are, of course, other equivalent expressions which can be obtained using the algebra
(2.4), for instance

�(λ) = λ+

λ−
A(λ+)D(λ−) − λ+

λ−
B(λ+)C(λ−). (3.15)

Similarly, if we write

Ln(λ) =
(

an(λ) bn(λ)

cn(λ) dn(λ)

)
, (3.16)

then it can easily be shown using (2.18) that the quantum determinant of the algebra (2.1a)
can be written as

Qet(Ln(λ)) = λ+

λ−
dn(λ−)an(λ+) − bn(λ−)cn(λ+). (3.17)

Hence, from (3.4), Qet(Ln(λ)) = λ+(λ+ + a) and, therefore, from (2.19),

�(λ) = λP
+ (λ+ + a)P , (3.18)

which manifestly belongs to the centre of the algebra.

4. Sklyanin variables

Following Sklyanin [29] the operator zeros of B(λ), xn, provide the separated canonical
variables. By ‘operator zeros’ it is meant that

B(λ) = BP−1

P−1∏
n=1

(λ − xn), (4.1)

where the {xi} := {xi}i=1...P−1 mutually commute. (In appendix C it is shown that BP−1 is
equal to the Casimir (3.3). We assume the mutual commutativity of the {xi}, this is consistent
with equation (2.4).) Conjugate variables to the xn are introduced by making the definitions

X−
n = A(λ)

∣∣∣∣
λ=xn

X+
n =
(

1 +
h

λ

)
D(λ)

∣∣∣∣
λ=xn

(4.2)

where the operator ordering prescription throughout this paper is that xn is substituted for the
spectral parameter, λ, from the left, thus,
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X−
n = A0 + xnA1 + · · · + xP

n , (4.3a)

X+
n = hD1 + xn(D1 + hD2) + · · · + xP

n . (4.3b)

As in [29] the full set of commutation relations between these operators follows from the
Yang–Baxter structure, equation (2.4), and reads,

[xm, xn] = 0 ∀ m, n (4.4a)

X±
mxn = (xn ± hδmn)X

±
m ∀ m, n (4.4b)[

X±
m,X±

n

] = 0 ∀ m, n (4.4c)[
X−

m,X+
n

] = 0 ∀ m �= n (4.4d )

X±
n X∓

n = �

(
xn ± h

2

)
∀ n, (4.4e)

where �(λ) is the quantum determinant of the model, given explicitly in equation (3.18). We
also have

τ(xn) = X+
n + X−

n , (4.4f )

which leads to the linear finite-difference spectral problem known as Baxter’s equation (see,
for example, [29, 30]).

The derivation of the Sklyanin algebra relations (equations (4.4a) to (4.4f )) proceeds
in the same way as in [29], but is slightly more involved as the initial equations from the
Yang–Baxter equation are more complicated (there are extra terms due, essentially, to the
non-ultralocal nature of this algebra). Remarkably, as the derivation is carried out, the extra
terms vanish, leaving the Sklyanin algebra relations.

The proof of the preservation of equation (2.4), for both the temporal and spatial
evolutions, is given in appendix A. As a consequence we have the following result for the
Sklyanin algebra under these evolutions.

Proposition. The Sklyanin algebra relations are preserved under both the temporal and
spatial discrete evolutions.

The (extended) Yang–Baxter structure of section 2 leads efficiently to the preservation
of the Sklyanin algebra relations, as is expressed in the proposition. The Sklyanin algebra
relations are the real starting point of this work. We now turn to the equations of motion in
terms of the Sklyanin algebra variables.

5. Quantum discrete Dubrovin equations

The equations of motion, for the temporal and the spatial evolutions, are derived in this
section. The aim is to establish these discrete evolutions in terms of the Sklyanin algebra
variables; this requires the reconstruction of w and one of the original dynamical variables,
1/v2, in terms of the Sklyanin algebra variables. Hence the issue of the reconstruction of the
original dynamical variables in terms of the Sklyanin algebra variables is also, necessarily,
addressed.

In section 5.1 the invariants of both the temporal and spatial evolutions are expressed in
terms of the Sklyanin algebra variables.

In section 5.2 the reconstruction of w in terms of the Sklyanin algebra variables is given.
This paves the way for the derivation of equations (5.14) and (5.20). As is illustrated for the
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P = 2 and P = 3 cases in section 6, these two equations, along with the preservation of
the invariants, give a well-defined temporal evolution. Hence, equations (5.14) and (5.20) of
section 5.2 are what we mean by the temporal quantum discrete Dubrovin equations.

In section 5.3 the reconstruction of 1/v2 in terms of the Sklyanin algebra variables is given.
Along with the reconstruction of w this paves the way for the derivation of equations (5.29)
and (5.31). In an exactly analogous fashion to (5.14) and (5.20) in the temporal case,
equations (5.29) and (5.31) give a spatial evolution. Hence, equations (5.29) and (5.31)
of section 5.3 are what we mean by the spatial quantum discrete Dubrovin equations. We
conjecture that the spatial evolution allows for a reconstruction of all of the original dynamical
variables in terms of the unshifted Sklyanin variables. This is illustrated in the P = 3 case in
section 6, and it is not technically difficult to confirm this for the next few larger-period cases.
However, the calculations quickly become very cumbersome as the period increases.

5.1. Invariants

In this section expressions are given for the invariants, which are the coefficients of the various
powers of λ in equation (3.13), in terms of the Sklyanin algebra variables. From the form of
the invariant in terms of entries of the monodromy matrix, (3.13), and their gradation (3.6),

τ(xn) = 2xP
n + xP−1

n IP−1 + xP−2
n IP−2 + · · · + xnI1 + I0. (5.1)

It is easily shown that IP−1 is a Casimir operator. Taking into account the gradation given in
equation (3.6), equation (3.14) gives us that the quantum determinant

�

(
λ +

h

2

)
= λ2P + λ2P−1(Ph + AP−1 + DP−1 + h − BP−1CP ) + · · · .

However, for the mappings of KdV type we have (from equation (3.18))

�

(
λ +

h

2

)
= λ2P + λ2P−1(2Ph + Pa) + · · · .

Therefore, using that the central elements BP−1 = CP = ν (as derived in appendix C),

IP−1 := AP−1 + DP−1 + h = ν2 + P(a + h). (5.2)

Now observe that
I0

I1

...

IP−2

 =


1 x1 . . . xP−2

1

1 x2 . . . xP−2
2

...
...

1 xP−1 . . . xP−2
P−1


−1

τ(x1) − 2xP
1 − xP−1

1 IP−1

τ(x2) − 2xP
2 − xP−1

2 IP−1

...

τ (xP−1) − 2xP
P−1 − xP−1

P−1IP−1

 . (5.3)

All terms on the right-hand side are known (remember that τ(xn) = X+
n + X−

n ). Equation (5.1)
may also be rewritten as

I1

I2

...

IP−1

 =


x1 x2

1 . . . xP−1
1

x2 x2
2 . . . xP−1

2
...

...

xP−1 x2
P−1 . . . xP−1

P−1


−1

τ(x1) − 2xP
1 − I0

τ(x2) − 2xP
2 − I0

...

τ (xP−1) − 2xP
P−1 − I0

 . (5.4)

Note that within the VanderMonde matrices all of the entries commute.
As the quantum discrete Dubrovin equations, which are derived in the following sections,

are also matricial equations, it is expedient to introduce some specialized notation. The symbol
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M is introduced to denote the VanderMonde matrix, the symbol D to denote the diagonal
matrix,

M =


x1 x2

1 . . . xP−1
1

x2 x2
2 . . . xP−1

2
...

...

xP−1 x2
P−1 . . . xP−1

P−1

 D =


x1 0 . . . 0
0 x2 . . . 0
...

...

0 0 . . . xP−1

 .

Vectors are indicated by a bold typeface, and all are P − 1 dimensional. The vector
e = (1, 1, . . . , 1)t . The vector consisting of ordered entries, labelled n to P − 2 + n,
for any integer n, is denoted by a bold typeface with a subscript n, for instance y0 =
(y0, y1, . . . , yP−2)

t , y1 = (y1, y2, . . . , yP−1)
t . In this notation equations (5.3) and (5.4) are

rewritten as

I0 = M−1D
(
X+

1 + X−
1 − DP 2e − DP−1IP−1e

)
and

I1 = M−1(X+
1 + X−

1 − DP 2e − I0e
)
,

respectively, where I0 and I1 denote the left-hand sides of (5.3) and (5.4) respectively.

5.2. Temporal equations

In section 5.2.1 we give the reconstruction of w in terms of the Sklyanin algebra variables. For
heuristic reasons the matricial equations are written out in full in this section. In section 5.2.2
the temporal quantum discrete Dubrovin equations are derived.

5.2.1. Reconstruction of w. Observe that, from the definitions (4.2) (and remembering that
xn are substituted for λ from the left),

D(xn) := D(λ)

∣∣∣∣
λ=xn

= xn

xn + h
X+

n.

(We take the casual attitude of writing 1/Y for the inverse of the operator Y.) Hence, still
working from the definitions,


A1

A2

...

AP−1

 =


x1 x2

1 . . . xP−1
1

x2 x2
2 . . . xP−1

2
...

...

xP−1 x2
P−1 . . . xP−1

P−1


−1

X−
1 − xP

1 − A0

X−
2 − xP

2 − A0

...

X−
P−1 − xP

P−1 − A0

 , (5.5)


D1

D2

...

DP−1

 =


x1 x2

1 . . . xP−1
1

x2 x2
2 . . . xP−1

2
...

...

xP−1 x2
P−1 . . . xP−1

P−1


−1

x1
h+x1

X+
1 − xP

1
x2

h+x2
X+

2 − xP
2

...
xP−1

h+xP−1
X+

P−1 − xP
P−1

 . (5.6)
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So, it is seen that,
A1 − D1 + hD2

A2 − D2 + hD3

...

AP−1 − DP−1 + hDP



=


x1 x2

1 . . . xP−1
1

x2 x2
2 . . . xP−1

2
...

...

xP−1 x2
P−1 . . . xP−1

P−1


−1


X−
1 + h−x1

h+x1
X+

1 − I0

X−
2 + h−x2

h+x2
X+

2 − I0

...

X−
P−1 + h−xP−1

h+xP−1
X+

P−1 − I0

 . (5.7)

The time-update of the monodromy matrix, equation (3.8), and a commutation relation
contained within (2.10) give

Ã = Bw − h

λ
(A − Bw) +

(
1 +

h

λ

)
D D̃ = A − Bw. (5.8)

Substituting xn for λ from the left, and again using the definitions (4.1) and (4.2), gives,

Ã0 + xnÃ1 + · · · + xP
n = − h

xn

X−
n + X+

n, (5.9a)

xnD̃1 + x2
nD̃2 + · · · + xP

n = X−
n . (5.9b)

From here we easily obtain (using Ã0 + hD̃1 = Ĩ 0 = I0) that
Ã1 − D̃1 + hD̃2

Ã2 − D̃2 + hD̃3

...

ÃP−1 − D̃P−1 + hD̃P

=


x1 x2

1 . . . xP−1
1

x2 x2
2 . . . xP−1

2
...

...

xP−1 x2
P−1 . . . xP−1

P−1


−1

X+
1 − X−

1 − I0

X+
2 − X−

2 − I0

...

X+
P−1 − X−

P−1 − I0

 .

(5.10)

Equation (3.8) also gives

Ã(λ) − D̃(λ) + A(λ) − D(λ) = wB(λ) + B(λ)w.

A consideration of the leading term as λ → ∞ shows that

ÃP−1 − D̃P−1 + AP−1 − DP−1 = 2BP−1w, (5.11)

as BP−1 is actually the Casimir (3.3) (this is shown in appendix C). Therefore

w = 1

2ν
(ÃP−1 − D̃P−1 + AP−1 − DP−1).

Expressions for ÃP−1 − D̃P−1 and AP−1 − DP−1 in terms of the Sklyanin algebra variables,{
xi, X

±
i

}
:= {xi, X

±
i

}
i=1,...,P−1, follow from equations (5.7) and (5.10). To obtain an

expression explicitly in terms of
{
xi, X

±
i

}
, I0 may be replaced by using (5.4); then Cramer’s

rule, along with (5.2) for the value of the central element IP−1, allows one to deduce that, in
terms of the Sklyanin algebra,
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w = 1

ν

ν2 + Pa + (P − 1)h + (−1)P
P−1∑
n=1

P−1∏
i=1
i �=n

1

xi − xn



×
(

2xP−1
n − 1

h + xn

X+
n − 1

xn

X−
n

) . (5.12)

5.2.2. Temporal quantum discrete Dubrovin equations. Equations (5.7) and (5.10) give, in
the notation introduced in section 5.1,

M̃−1
(
X̃−

1 + (h1 + D̃)−1(h1 − D̃)X̃+
1 − I0 e

)=M−1
(
X+

1 − X−
1 − I0 e

)
. (5.13)

This constitutes the (temporal part of the) quantum discrete Dubrovin equations, as given
classically in [17]. Note that the time-evolved variables still obey the relations (4.4a) to (4.4f )
(as stated in the proposition of section 4). Along with the time-update invariance of (5.4),
(5.13) leads to

M̃−1
(
D̃P e − (h1 + D̃)−1D̃X̃+

1

) = M−1(DP e − X−
1 ). (5.14)

The equations for the elementary symmetric polynomials in {x̃i} in terms of
{
xi, X

±
i

}
will

now be obtained. A consideration of equation (4.1) shows that these follow immediately from
the coefficients of different powers of λ in B̃(λ), that is, from {B̃0, . . . , B̃P−2}. Equation (3.8)
and a commutation relation contained within (2.10) give

B̃(λ) = 1

λ

[
Aw − Bw2 +

(
1 +

h

λ

)
(C − Dw)

]
. (5.15)

Hence, to obtain the elementary symmetric polynomials in {x̃i} in terms of
{
xi, X

±
i

}
, C(λ)

must be expressed in terms of
{
xi, X

±
i

}
. From equations (3.14) and (3.18) for the quantum

determinant,

B(λ − h)C(λ) = λ

λ − h
D(λ − h)A(λ) − λP (λ + a)P . (5.16)

Consider the first term on the right-hand side,

λ

λ − h
D(λ − h)A(λ) =

2P−1∑
j=0

λj+1
j∑

k=0
k�j−P
k�P−1

[
P−1∑
l=k

(
l

k

)
(−h)l−kDl+1

]
Aj−k, (5.17)

where DP = 1 and
(

l

k

)
denotes the binomial coefficient,

(
l

k

) = l!/[(l − k)!k!]. Whence,
substituting xn for λ from the left,

C(xn) = 1

BP−1

(
P−1∏
l=1

1

xn − xl − h

)

×


2P−1∑
j=0

xj+1
n

j∑
k=0

k�j−P
k�P−1

[
P−1∑
l=k

(
l

k

)
(−h)l−kDl+1

]
Aj−k − xP

n (xn + a)P

 . (5.18)

A consideration of the λ0 term of D̃(λ) in equation (5.8) reveals that A0 = B0w. As w is
given in terms of the Sklyanin algebra,

{
xi, X

±
i

}
, in equation (5.12), we have, along with
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equations (5.5) and (5.6), all of {An} and {Dn} in terms of
{
xi, X

±
i

}
. Therefore equation (5.18)

gives C(xn) entirely in terms of the Sklyanin algebra. Consider now equation (5.15) with xn

substituted for λ from the left, this defines

B̃(xn) = 1

xn

[(
X−

n − X+
n

)
w +

(
1 +

h

xn

)
C(xn)

]
. (5.19)

The right-hand side of (5.19) may be expressed entirely in terms of
{
xi, X

±
i

}
, for brevity

denote the right-hand side, strictly in terms of
{
xi, X

±
i

}
, by B̃n. Therefore, with B̃1 =

(B̃1, B̃2, . . . , B̃P−1)
t , we have the following expression,

B̃0 = M−1D(B̃1 − DP−1BP−1e), (5.20)

which gives the elementary symmetric polynomials in {x̃i} in terms of
{
xi, X

±
i

}
.

Equations (5.14) (or (5.13)) and (5.20) constitute the temporal quantum discrete Dubrovin
equations.

5.3. Spatial equations

In this section we consider an evolution along the lattice at a constant time level. Specifically,

T = LP LP−1LP−2 . . . L2L1 
→ T̂ = L1LP LP−1 . . . L3L2 
→ · · · . (5.21)

(The hat,̂, is used to denote the evolution along the lattice at a constant time-level.) In
the temporal case the reconstruction of w is required for the quantum discrete Dubrovin
equations. The spatial equations also require the reconstruction of 1/v2, this is achieved in
section 5.3.1. Together with equation (3.9), this also gives the reconstruction of v1. If one
requires a reconstruction of the original dynamical variables, {vk}, in terms of the Sklyanin
algebra set up at each dynamical variable’s particular lattice site (that is, v1 and v2 in terms of
{xi, X

±
i }, v3 and v4 in terms of {x̂i , X̂

±
i }, etc) then the reconstruction is complete. However, we

conjecture that the spatial quantum discrete Dubrovin equations, as derived in section 5.3.2,
allow for a reconstruction of all of the original dynamical variables in terms of the unshifted
Sklyanin variables

{
xi, X

±
i

}
.

5.3.1. Reconstruction of 1
v2

. In appendix C it is shown that BP−1 is equal to the Casimir

(3.3), it is obvious that B̂P−1 also is (as it is still the sum over all {v2j }). Now, from the
definitions of the ‘conjugate variables’ in section 4,

A1 − D1 + hD2 ± 2B0
1

v2
= M−1

(
X−

1 + (h1 + D)−1(h1 − D)X+
1 − I0 e ∓ DP 2BP−1

1

v2
e
)

.

(5.22)

Spatially updated terms follow from (5.21) (or, equivalently, (2.14)). Using the commutation
relations in (2.13),

Â +
h

λ
D̂ = 1

λ + a
(A − Bv1)(v2v1 + λ + a) +

(
1 +

h

λ

)
1

λ + a
(C − Dv1)v2, (5.23a)

D̂ = 1

λ + a
[−Av2 + B(λ + a + v1v2)]v1 +

(
1 +

h

λ

)
1

λ + a
[−Cv2 + D(λ + a + v1v2)],

(5.23b)
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B̂ = 1

λ(λ + a)
[−Av2 + B(λ + a + v1v2)](v1v2 + h + λ + a)

+

(
1 +

h

λ

)
1

λ(λ + a)
[−Cv2 + D(λ + a + v1v2)]v2. (5.23c)

So,

Â +
h

λ
D̂ − D̂ + 2λB̂

1

v2
= −λ + a + 2h

λ + a
A +

(
1 +

h

λ

)
D

+ 2
(λ + a + h)

λ + a
B(λ + a + v1v2)

1

v2
. (5.24)

From equation (5.24) one obtains

Â1 − D̂1 + hD̂2 + 2B̂0
1

v2

= M−1

(
X+

1 − (D + a1)−1(D + a1 + 2h1)X−
1 − I0 e − DP 2BP−1

1

v2
e
)

. (5.25)

It is easily shown that the leading term in equation (5.24) as λ → ∞ gives

2

(
BP−1w + BP−1

h

v2

)
=
(

ÂP−1 − D̂P−1 + h + 2B̂P−2
1

v2

)
+

(
AP−1 − DP−1 + h − 2BP−2

1

v2

)
. (5.26)

Equations (5.22) and (5.25) along with (5.7), (5.10) and (5.11) from the reconstruction of w,
and Cramer’s rule, lead to

1

v2
= 1

ν

1 + (−1)P−1
P−1∑
n=1

1

xn

P−1∏
i=1
i �=n

1

xi − xn

 1

xn + a
X−

n

 . (5.27)

Along with w, as reconstructed in equation (5.12), and equation (3.9) for wn in terms of the
dynamical variables {vk}, equation (5.27) leads immediately to the reconstruction of v1.

5.3.2. Spatial quantum discrete Dubrovin equations. Equations (5.22) and (5.25) give

M̂−1

(
X̂−

1 + (h1 + D̂)−1(h1 − D̂)X̂+
1 − I0 e − D̂P 2BP−1

1

v2
e
)

= M−1

(
X+

1 − (D + a1)−1(D + a1 + 2h1)X−
1 − I0 e − DP 2BP−1

1

v2
e
)

, (5.28)

for the spatial part of the quantum discrete Dubrovin equations. As the invariants of the time
evolution are also invariants of the spatial evolution we may use them, in the form given in
equation (5.4), to rewrite (5.28) as

M̂−1

(
(h1 + D̂)−1D̂ X̂+

1 − D̂P

(
1 − BP−1

1

v2

)
e
)

= M−1

(
(D + a1)−1(D + a1 + h1)X−

1 − DP

(
1 − BP−1

1

v2

)
e
)

. (5.29)

The expressions for the elementary symmetric polynomials in the ‘spatially updated’ variables,
{x̂i}, in terms of

{
xi, X

±
i

}
are now given. Upon substituting xn for λ from the left,
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equation (5.23c) becomes

B̂(xn) = 1

xn(xn + a)
X+

nwv2
2 − 1

xn(xn + a)
X−

n v2
2w +

1

xn + a

× (X+
n − X−

n

)
v2 −
(

1 +
h

xn

)
1

xn(xn + a)
C(xn)v

2
2 . (5.30)

Note that C(xn) was expressed in terms of
{
xi, X

±
i

}
by equations (5.5), (5.6) and (5.18); w

was reconstructed in terms of
{
xi, X

±
i

}
in equation (5.12); v2 was reconstructed in terms of{

xi, X
±
i

}
in equation (5.27). Therefore the right-hand side of (5.30) can be given entirely in

terms of
{
xi, X

±
i

}
. For brevity denote the right-hand side of (5.30) expressed strictly in terms

of
{
xi, X

±
i

}
by B̂n. With this notation

B̂0 = M−1D(B̂1 − DP−1BP−1e), (5.31)

giving the elementary symmetric polynomials in {x̂i} in terms of
{
xi, X

±
i

}
.

Equations (5.29) (or (5.28)) and (5.31) constitute the spatial quantum discrete Dubrovin
equations.

6. Examples

The well-defined temporal evolution which follows from the quantum discrete Dubrovin
equations is illustrated for the P = 2 case in section 6.1 and for the P = 3 case in section 6.2.
The reconstruction of the original dynamical variables, {vk}, in terms of the Sklyanin algebra
variables,

{
xi, X

±
i

}
, is also performed in the P = 2 and P = 3 cases. The reconstruction is

achieved, essentially, via a ‘spatial evolution’ using the spatial part of the quantum discrete
Dubrovin equations.

6.1. The P = 2 case

6.1.1. Temporal evolution. With P = 2, equation (5.12) gives

w = 1

ν

(
ν2 + 2a + h + 2x − 1

x + h
X+ − 1

x
X−
)

. (6.1)

Equation (5.14) gives directly that

x̃ − 1

x̃ + h
X̃+ = x − 1

x
X−. (6.2)

Along with (6.1), equation (5.20) leads to

x̃ = 1

ν
w

(
x − 1

x
X−
)

. (6.3)

It is easily seen that(
1 +

h

x

)
1

x + h
X+ = − 1

x
X− +

1

x
I0 + I1 + 2x.

Hence we may consider the evolution given by the quantum discrete Dubrovin equations to
be that of x and 1

x+h
X+ (or 1

x
X−) along with the preservation of the invariant, I0 = Ĩ0 . . ..

Equation (5.2) gives I1 = ν2 + 2(a + h).



8080 C M Field and F W Nijhoff

6.1.2. Reconstruction. Setting P = 2 in equation (5.27) gives

1

v2
= 1

ν

(
1 − 1

x(x + a)
X−
)

. (6.4)

It follows trivially from the Casimir (3.3), v2 + v4 = ν, that we also have v4 in terms of
(x,X±). Equation (3.9) along with (6.1) and (6.4) gives the reconstruction of v1, and the
Casimir (3.3), v1 + v3 = ν, gives the reconstruction of v3. Therefore, full reconstruction has
been achieved.

6.2. The P = 3 case

6.2.1. Temporal evolution. For this section we define

π1 := 1

x2 − x1

(
x2

x1 + h
X+

1 − x1

x2 + h
X+

2

)
π2 := 1

x2 − x1

(
1

x1 + h
X+

1 − 1

x2 + h
X+

2

)
,

φ1 := 1

x2 − x1

(
x2

x1
X−

1 − x1

x2
X−

2

)
φ2 := 1

x2 − x1

(
1

x1
X−

1 − 1

x2
X−

2

)
.

Then, with P = 3, equation (5.12) gives

w = 1

ν
[ν2 + 3a + 2h + 2(x1 + x2) + π2 + φ2]. (6.5)

Equation (5.14) gives directly that

x̃1x̃2 + π̃1 = x1x2 + φ1, (6.6)

x̃1 + x̃2 + π̃2 = x1 + x2 + φ2. (6.7)

Along with (6.5), equation (5.20) leads to

x̃1x̃2 = 1

ν
w(x1x2 + φ1), (6.8)

x̃1 + x̃2 = 1

ν
w (x1 + x2 + φ2) − 1

ν2
[2x1x2 + h(x1 + x2) + h2 − 3a2

− (x1 + x2 + 2h)(x1 + x2 + 2h + 3a) + π1 + φ1 + π2φ2]. (6.9)

It is easily seen that

h

x1x2
π1 + π2 = −φ2 +

1

x1x2
I0 − I2 − 2(x1 + x2)

and [
1 +

h(x1 + x2)

x1x2

]
π1 − hπ2 = −φ1 +

x1 + x2

x1x2
I0 + I1 − 2x1x2.

Hence we may consider the evolution given by the quantum discrete Dubrovin equations to be
that of the elementary symmetric polynomials x1x2 and x1 + x2, and π1 and π2 (or φ1 and φ2),
along with the preservation of the invariants, Ii = Ĩi . . .. The form of the invariants follows
from (5.2) and (5.3).
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6.2.2. Reconstruction. Setting P = 3 in equation (5.27) gives

1

v2
= 1

ν

[
1 +

1

x2 − x1

(
1

x1(x1 + a)
X−

1 − 1

x2(x2 + a)
X−

2

)]
. (6.10)

In the P = 3 case, equation (5.29) of the spatial part of the quantum discrete Dubrovin
equations reads( −x̂1x̂2

(
1 − ν

v2

)− 1
x̂2−x̂1

(
x̂2

x̂1 + h
X̂+

1 − x̂1
x̂2 + h

X̂+
2

)
(x̂1 + x̂2)

(
1 − ν

v2

)
+ 1

x̂2−x̂1

(
1

x̂1 + h
X̂+

1 − 1
x̂2 + h

X̂+
2

))

=
(−x1x2

(
1 − ν

v2

)− 1
x2−x1

[
x2
x1

(
1 + h

x1 + a

)
X−

1 − x1
x2

(
1 + h

x2 + a

)
X−

2

]
(x1 + x2 − h)

(
1 − ν

v2

)
+ 1

x2−x1

(
1
x1

X−
1 − 1

x2
X−

2

) )
.

(6.11)

The top −(a + h) bottom of (6.11) leads to

[−x̂1x̂2 − (a + h)(x̂1 + x̂2)]

(
1 − ν

v2

)
− 1

x̂2 − x̂1

×
(

x̂2 + a + h

x̂1 + h
X̂+

1 − x̂1 + a + h

x̂2 + h
X̂+

2

)
= (a + h)2

(
1 − ν

v2

)
. (6.12)

Therefore,
1

v0
= 1

ν

[
1 +

1

x2 − x1

(
1

(x1 + h)(x1 + a + h)
X+

1 − 1

(x2 + h)(x2 + a + h)
X+

2

)]
.

It follows trivially from the Casimir (3.3), v0 + v2 + v4 = ν, that we also have v4 in terms of{
xi, X

±
i

}
i=1,2.

The reconstruction of {v2j+1} follows from that of w. It follows from equation (3.9) that
v1, in terms of {xi, X

±
i }i=1,2, is obtained from equations (6.5) and (6.10). Using the form of

I0 which follows from (5.3), one obtains

w = 1

ν

[
1

x1x2
I0 − h − h

x1x2
π1

]
.

Now, as I0 is invariant under spatial updates, it may be written, using the same expression
from equation (5.3), at any spatial level. In simple terms, as I0 = Î 0 = ̂̂I 0 = · · ·, the same
expression for I0 may be used with any number of hats above or below the operators. Hence,

ŵ = 1

ν

[
1

x̂1x̂2
I0 − h − h

x̂1x̂2
π̂1

]
. (6.13)

The top equation of the spatial quantum discrete Dubrovin equations, (6.11), gives

1

x̂1x̂2
π̂1 =

(
1

x̂1x̂2
x1x2 − 1

)(
1 − ν

v2

)
+

1

x̂1x̂2

1

x2 − x1

[
x2

x1

(
1 +

h

x1 + a

)
X−

1 − x1

x2

(
1 +

h

x2 + a

)
X−

2

]
, (6.14)

and equation (5.31) gives

x̂1x̂2 = − 1

aν
(x1x2 + φ1) v2

2w +
1

a
x1x2v2w +

h

aν
(x1x2 + π1) v2

− h

aν2
[2x1x2 + h(x1 + x2) + h2 − 3a2

− (x1 + x2 + 2h)(x1 + x2 + 2h + 3a) + π1 + φ1 + π2φ2]v2
2 . (6.15)
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So, with equations (6.5) and (6.10), this gives x̂1x̂2 in terms of
{
xi, X

±
i

}
. Therefore we

have reconstructed ŵ in terms of
{
xi, X

±
i

}
. With the reconstruction of v4 this then gives a

reconstruction of v3, and from the Casimir (3.3), v1 + v3 + v5 = ν, this gives a reconstruction
of v5. Therefore, full reconstruction has been achieved.

7. Conclusion

The quantum discrete Dubrovin equations have been derived. Equations (5.14) and (5.20)
give a temporal evolution and (5.29) and (5.31) give a spatial evolution.

The classical discrete Dubrovin equations were published in [17, 22], but in [17] the focus
was on temporal equations only. In the temporal case, the work presented here is very much
analogous to the classical case. The classical (h → 0) limit of (5.13) is the discrete Dubrovin
equations as presented in [17]. This is seen as follows. The derivation of the (classical)
discrete Dubrovin equations employs the invariant spectral curve

det(T (λ) − η) = 0, (7.1)

which defines a hyperelliptic curve of genus g = P − 1. The classical equations are written
in terms of the discriminant of the hyperelliptic curve (7.1), R(λ). This discriminant may be
expressed as

R(λ) = 1
4 (A(λ) + D(λ))2 − det(T (λ)). (7.2)

Following [17], we see that (7.2) implies that
1
2 (A(λ) − D(λ)) = κ

√
R(λ) − B(λ)C(λ),

where κ denotes the sign ± and corresponds to the choice of sheet of the Riemann surface,
the condition κ̃ = −κ can be seen by also considering (3.8) and evaluating at the (no longer
operator) roots of B(λ). A quantum deformation of the expression (7.2), evaluated at an
operator root of B(λ), xn, is

R(xn) = 1

4
τ(xn)

2 − 1

2

(
�

(
xn − h

2

)
+ �

(
xn +

h

2

))
= 1

4

(
X−

n − X+
n

)2
. (7.3)

Therefore, in the classical limit, the quantum discrete Dubrovin equations, (5.13), become

M̃−1

(
κ̃
√

R(x̃1) − 1

2
I0 e
)

= M−1

(
−κ
√

R(x1) − 1

2
I0 e
)

, (7.4)

where
√

R(x1) = (
√

R(x1), . . . ,
√

R(xP−1))
t . Equation (7.4) is the classical discrete

Dubrovin equation, as first presented in [17]. (The notation of [17] is such that the roots
of B(λ) are denoted by {µi}, rather than by {xi}.) Classically, the discrete Dubrovin equations
are the intermediate step towards the parametrization of the orbits of the classical map. In [17],
the parametrization of the solutions of (7.4) in terms of Abelian functions of Kleinian type
was discussed, and illustrated in the P = 2 and P = 3 cases. From the new perspective of this
paper it is surprising that the classical limit of (5.20) is not required for this parametrization,
and, indeed, does not feature in [17].

Returning to the quantum equations, the next issues to be addressed concern the
representation theory. Then, drawing inspiration from the classical discrete Dubrovin
equations, we would hope to be able to construct explicit expressions for the quantum
propagators interpolating over an arbitrary number of discrete-time steps. Effective
mechanisms for computing expectation values and long-time asymptotics for the transition
amplitudes would also be desirable corollaries of this proposed work. Extensions of the
present work to the higher rank case associated with quantum mappings in the Gel’fand–Dikii
hierarcy [18, 19] also form the subject of future work.
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Appendix A. Quantum invariants

Consider the following evolution of the monodromy matrix:

T ′ = NT N−1 (A.1)

(so, to be specific, N could be M1 or L1). In this appendix it will be proved that if N satisfies
the relations

R+
12N1N2 = N2N1R

−
12 (A.2)

and

T1N
−1
1 S+

12N2 = N2S
−
12T1N

−1
1 (A.3)

then the Yang–Baxter relation (2.4) is preserved through this evolution and, moreover,

τ(λ) = tr(K(λ)T (λ))

is invariant under this evolution, for a certain K(λ) which will also be derived. First the
preservation of the Yang–Baxter relation (2.4) under the evolution (A.1) is shown. It requires
only (A.2), (A.3), and the constraints on the R and S matrices that R±

12S
±
12 = S∓

12R
∓
12,

R+
12T

′
1S

+
12T

′
2 = R+

12N1T1N
−1
1 S+

12N2T2N
−1
2

= R+
12N1N2S

−
12T1N

−1
1 T2N

−1
2

= N2N1S
+
12R

+
12T1N

−1
1 T2N

−1
2

= N2N1S
+
12R

+
12T1S

+
12T2N

−1
2 N−1

1 S−−1

12

= N2N1S
−
21T2S

−
12T1R

−
12N

−1
2 N−1

1 S−−1

12

= T ′
2S

+
21N1N2S

−
12T1N

−1
1 N−1

2 S+−1

12 R−
12

= T ′
2S

−
12T

′
1R

−
12. (A.4)

The derivation of the invariants of the evolution (A.1) will now be given. Introduce the
tensor

K12 = P12K1K2, (A.5)

where P12 is the permutation operator, which satisfies the relations

P12(A ⊗ B) = (B ⊗ A)P12 P12 = P21 tr2 P12 = 11. (A.6)

Choosing λ1 = λ2, we can take the trace of (A.3) contracted with K12. The left-hand side
leads to

tr1 tr2
(
K12T1N

−1
1 S+

12N2
) = tr2

(
K2T2N

−1
2 tr1

(
P12K2S

+
12

)
N2
) = tr(KT ) (A.7)

provided that

tr1
(
P12K2S

+
12

) = 12. (A.8)

Under the same condition, (A.8), we have, from the right-hand side of equation (A.3), that

tr1tr2
(
K12N2S

−
12T1N

−1
1

) = tr1
(
K1N1 tr2(P12K1S

−
12)T1N

−1
1

) = tr(KT ′). (A.9)

Hence, if K(λ) is a solution of equation (A.8), we have the invariance of tr(K(λ)T (λ)) under
the evolution given by equation (A.1).
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A solution to equation (A.8) is found by taking

K2 = tr1
{
P

t1
12

[(t1
S+

12

)−1]}
. (A.10)

This is most easily verified by introducing the twisted product

X12 ∗ Y12 :=t2
(t2

X12
t2Y12
) =t1

(t1
Y12

t1X12
)
.

An inverse with respect to the * product is

X−1∗
12 =t2

((t2
X12
)−1) =t1

((t1
X12
)−1)

.

So, with equation (A.10),

tr1
(
P12K2S

+
12

) = tr1 tr3
(
P12P32

(
S+

32

)−1∗
S+

12

)
= tr1 tr3

(
P32P13

(
S+

32

)−1∗
S+

12

)
= tr3

(
P32 tr1

(
P13
(
S+

32

)−1∗
S+

12

))
= tr3

(
P32S

+
32 ∗ (S+

32

)−1∗)
= tr3(P32132) = 12.

For the proof of the commutativity of the invariants τ(λ) = tr(K(λ)T (λ)) with the form of
K(λ) given in equation (A.10) we refer the reader to [20].

Appendix B. Quantum determinant factorization

In the case of ultralocal models it is straightforward to show that the quantum determinant
is equal to the product of the local quantum determinants of the constituent L operators.
This factorization will now be proved for the present non-ultralocal case, which is less
straightforward.

Equations (2.1a) to (2.1c) and (2.7) give

R+
12

←−
m∏

j=1

Lj,1

←−
m∏

k=1

Lk,2 =
←−
m∏

j=1

Lj,2

←−
m∏

k=1

Lk,1R
−
12, (B.1)

for m � P − 1. From equations (B.1) and (2.7),

R−
12S

−
12

←−
m∏

j=1

Lj,1

←−
m∏

k=1

Lk,2 = S+
12

←−
m∏

j=1

Lj,2

←−
m∏

k=1

Lk,1R
−
12. (B.2)

Therefore, for the particular relative value of the spectral parameters λ1 and λ2 such that R−
12 is

proportional to a rank-one projector, equation (B.2) is defined to be equal to R−
12Qet

( ←−∏m
j=1 Lj

)
.
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Consider the left-hand side of equation (B.2),

R−
12Qet


←−
m∏

j=1

Lj

 = R−
12S

−
12

←−
m∏

j=1

Lj,1

←−
m∏

k=1

Lk,2

= R−
12S

−
12Lm,1Lm,2S

+
21

←−
m−1∏
j=1

Lj,1

←−
m−1∏
k=1

Lk,2

= S+
12Lm,1Lm,2R

−
12S

−
12

←−
m−1∏
j=1

Lj,1

←−
m−1∏
k=1

Lk,2

= Qet(Lm)R−
12Qet

( ←−
m−1∏
j=1

Lj,1

)
, (B.3)

and, therefore,

Qet


←−
m∏

j=1

Lj

 =
←−
m∏

j=1

Qet(Lj ), (B.4)

where m � P − 1. The proof of the same result via the right-hand side of (B.2) follows
similarly.

The quantum determinant for the Yang–Baxter structure (2.4), �, was introduced in
equation (2.16). From the left-hand side of (2.15),

R−
12� = R−

12S
−
12T1S

+
12T2

= R−
12S

−
12LP,1LP,2S

+
21

←−
P−1∏
j=1

Lj,1

←−
P−1∏
k=1

Lk,2

= S+
12LP,2LP,1R

−
12S

−
12

←−
P−1∏
j=1

Lj,1

←−
P−1∏
k=1

Lk,2, (B.5)

(the same result follows similarly for the right-hand side) and hence, from equation (B.4), we
have

� =
←−
P∏

j=1

Qet(Lj ).

Appendix C. BP−1 and CP are in the centre of the algebra

It can be shown, using the commutation relations (2.4) with the explicit realization of the R
and S matrices (3.10) and the gradation of the monodromy matrix (3.6), that BP−1 and CP

belong to the centre of the algebra. The model specific proof given here, however, is more
constructive for our purposes as it reveals BP−1 and CP to have the value prescribed to the
Casimirs in equation (3.3). Consider LP +1,

LP +1 =
(

λ + a + v2P +2v2P +1 v2P +2

λv2P +1 λ

)
. (C.1)
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From the definition of the monodromy matrix, equation (3.5), and the grading of the
monodromy matrix for period P, equation (3.6), along with equation (C.1), we observe that
the monodromy matrix of period P + 1, TP +1, has the form(

λP +1 + λP [AP−1 + a + v2P +2v2P +1 + v2P +2CP ] + · · · λP [BP−1 + v2P +2] + · · ·
λP +1[CP + v2P +1] + · · · λP +1 + λP [DP−1 + v2P +1BP−1] + · · ·

)
.

The B and C entries give us recursion relations for the coefficients of the highest order of
λ. Using these, in conjunction with the information from (C.1) that for the period = 1 case
CP = v1 and BP−1 = v2, we obtain that for the period = P case

BP−1 =
P∑

n=1

v2n CP =
P∑

n=1

v2n−1. (C.2)

For the mappings of KdV type these summations are the Casimirs given in equation (3.3).
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